Transfinite mean value interpolation in general dimension
نویسندگان
چکیده
Mean value interpolation is a simple, fast, linearly precise method of smoothly interpolating a function given on the boundary of a domain. For planar domains, several properties of the interpolant were established in a recent paper by Dyken and the second author, including: sufficient conditions on the boundary to guarantee interpolation for continuous data; a formula for the normal derivative at the boundary; and the construction of a Hermite interpolant when normal derivative data is also available. In this paper we generalize these results to domains in arbitrary dimension. Math Subject Classification: 41A05, 65D05
منابع مشابه
Transfinite mean value interpolation
Transfinite mean value interpolation has recently emerged as a simple and robust way to interpolate a function f defined on the boundary of a planar domain. In this paper we study basic properties of the interpolant, including sufficient conditions on the boundary of the domain to guarantee interpolation when f is continuous. Then, by deriving the normal derivative of the interpolant and of a m...
متن کاملTransfinite interpolation over implicitly defined sets
In a general setting, the transfinite interpolation problem requires constructing a single function´Üµ that takes on the prescribed values and/or derivatives on some collection of point sets. The sets of points may contain isolated points, bounded or unbounded curves, as well as surfaces and regions of arbitrary topology. All such closed semi-analytic sets may be represented implicitly by real ...
متن کاملTransfinite mean value interpolation in 3D
s for MAIA 2007 The limits of bivariate Lagrange projectors Carl de Boor∗ and Boris Shekhtman Eastsound, Washington In a talk in Norway in 2003, the first author conjectured that any finite-rank ideal projector (i.e., finite-rank linear projector on the space of polynomials in d variables whose kernel is a polynomial ideal, i.e., a linear space also closed under pointwise multiplication by poly...
متن کاملMaharavo Randrianarivony Topological Transfinite Interpolations in the Multidimensional Simplex and Hypercube
We first demonstrate how to construct a transfinite interpolation on a simplex of arbitrary dimension d. The inputs are (d + 1) functions describing the simplicial faces of decremented dimension (d − 1). We deduce the explicit expressions for tetrahedra and triangles by using the CGNS convention for the enumeration of topological entities. Second, our construction is applied to hypercubes as we...
متن کاملBoundary Element Formulation of Harmonic Coordinates
We explain how Boundary Element Methods (BEM) can be used to speed up the computation and reduce the storage associated with Harmonic Coordinates. In addition, BEM formulation allows extending the harmonic coordinates to the exterior and makes possible to compare the transfinite harmonic coordinates with transfinite Shepard interpolation and Mean Value Coordinates. This comparison reveals that ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Computational Applied Mathematics
دوره 233 شماره
صفحات -
تاریخ انتشار 2010